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Abstract. Conceptual graphs are based on the existential graphs of
Peirce and the semantic networks of AI (see [Sa92]). Existential graphs
are composed of three syntactical elements: lines of identity, predicate
names and cuts (which are used for negation). In [Da0(] and [Da0T]
we introduced the cuts of existential graphs as new syntactical element
to concept graphs. The resulting concept graphs with cuts have at least
the expressivity of existential graphs. In this article, we present some
ideas how existential graphs can be translated to concept graphs with
cuts, or, in other words, how existential graphs can be regarded as special
concept graphs with cuts. In order to do this, we provide several examples
of existential graphs. We discuss the meanings of these examples and
how they should be translated to concept graphs with cuts. After the
discussion, we attempt to provide a formal definition of existential graphs
and a formal definition of their translation to concept graphs with cuts.

1 Introduction

Peirce invented the Existential Graphs (EGs) in 1896. He called them his ‘chef
d’ouevre’ and said they were ‘the luckiest find of my career’ (see [Sa97]). Peirce
also invented the algebraic notation predicate calculus, but he preferred the di-
agrammatic style of logic. Although the algebraic style of logic became widely
accepted, EGs are still relevant. They are used in teaching, in automate reason-
ing and theorem proving (see for example the works of Hammer and Shin, and
John Stewarts PhD-Thesis on theorem proving with EGs). And what is most
important for this work: Conceptual graphs are based on EGs. But a solid math-
ematical foundation of EGs is still missing in literature. In this work we provide
an approach of a mathematical foundation of EGs which s based on concept
graphs.

In [So97 Sowa says ‘Conceptual graphs (CGs) are an extension of existential
graphs with features adopted from linguistics and AI’ The term ‘extension’
should not be understood syntactically: Sowa adopted the ideas of existential
graphs (EGs), but CGs have a different syntax. But ‘extension’ can be under-
stood semantically: The decisive idea is that everything which can be expressed
with EGs can be expressed with CGs, too. A crucial part of this idea is that the
cuts of EGs can be expressed by negation contexts in conceptual graphs. But



contexts in CGs are handled as metalevel operators, but we consider negation as
a logical, not a metalevel operator. So we removed the negation contexts from
CGs. Instead of them, we have introduced the cuts of EGs as new syntactical
element to CGs (see [Da00], [Da0T], [Da02]). Furthermore the coreference links
are replaced by so-called identity links, i.e. edges in the usual sense which are la-
belled by the identity relation id. The resulting graphs are called concept graphs
with cuts.

We want to stress that Peirce distinguished between diagrams of EGs, which he
called replicas of EGs, and the graphs themselves. He said: ‘A graph is a proposi-
tional expression in the System of FExistential Graphs of any possible state of the
universe. It is a Symbol, and, as such, general, is accordingly to be distinguished
from a graph-replica. > So a replica of an EG is a diagrammatic representation
of an underlying (abstract) EG. Please note that we have the same situation
for concept graphs: They can be represented diagrammatically, but they are no
diagrams.

Now the idea that everything which can be expressed with EGs can be expressed
with CGs can be refined in the following way: We want to find a mapping =
which maps an replica of an EG € to a concept graphs with cuts ® := Z(¢€)
which has the same semantical meaning as €. The mapping = will map lines of
identity to concept boxes and identity links, predicate spots to edges and
cuts to cuts.

In this work we want to show how the mapping = should work. In order to do
this, we provide several examples of EGs by providing their diagrams. We discuss
the meanings of these examples and which difficulties we have to cope with when
we want to translate them to concept graphs with cuts. After this discussion,
we attempt to provide a formal definition of replicas of EGs as diagrams in the
euclidean space. Afterwords we will provide a formal definition of the mapping
= which maps the diagrams to special concept graphs with cuts. These concept
graphs with cuts can be considered to be the underlying EGs of the replicas.
This approach strengthens the mathematical foundations of EGs as well as of

EGs, and it shows precisely why and where CGs are an extension of EGs.

Before we start the discussion, we want to give a short overview over the main
sources in literature we are referring to. Peirce himself did not write a ‘standard
textbook’ on EGs, and, as Sowa says in his comments in [PS09], ‘reading Peirce’s
manuscripts can be both frustrating and rewarding.” Roberts worked through
Peirce’s manuscripts, and his PhD-thesis ‘The Existential Graphs of Charles
S. Peirce’ is a benchmark in the research on EGs and the best introduction
in EGs we know. Burch is another expert on the work of Peirce. In his book
‘A Peircean Reduction Theses’ ([Bu91]) he worked out the ‘Peircean Algebraic
Logic’ which, as he says, ‘is designed specifically to accord as closely as possible
with the system of Existential Graphs that Peirce developed in the late 1890s.

! We have chosen the letter 5 for two reasons: First, we have decided to use a capital
greek letter following the well known mapping & : CG — FOL (and the mapping
¥ : FOL — CG which some authors use, too). Secondly, the form of ‘=’ is similar
to ‘E’, the first letter of ‘Existential Graphs’.



In order to understand the graphical representations of EGs, chapter 11 of his
book is very instructive. Sowa provides in his manuscript ‘Logic: Graphical and
Algebraic’ ([So97]) a short introduction into EGs. Furthermore he has written
enlightening comments on MS514, which Peirce wrote in 1909 as a tutorial on
EGs. MS514 is also one of two work sources of Peirce we use for our analysis of
EGs. The other one is given by his Cambridge lectures from 1898 (esp. Lecture
3: ‘The Logic of Relatives’). These are the main sources we use in this article.
Of course the mentioned authors have written more on EGs, and there are more
authors which are experts on EGs (e.g. Hammer and Shin).

2 Examples for Existential Graphs

In this section we provide some examples for EGs and their translation to concept
graphs with cuts.

EGs are composed of three kinds of parts:

— lines of identity, which are used to denote the existence of objects and the
identity between objects (in this work, we will write ‘Lol’ instead of ‘line of
identity’ for short)

— predicate names, which are attached to Lols and which are used to denote
attributes of or relations between the objects

— cuts, which are used to denote negation. In his later work, e.g. in [PS09)],
Peirce used shaded areas instead of cuts. In this work, we use cuts to keep
conform with the notation we used in [Da00], [Da0T] and [Da02]. But when
we adopt an example Peirce has given in [PS09], we draw them in their
original manner with shaded and unshaded areas instead of cuts.

1st Example:

The first EG &; we want to discuss is a single line of identity, i.e. & := ——
The (naive) meaning of this graph is ‘something exists’, or, perhaps better, ‘there
is something’.

Lols are so-called ‘indivisible graphs’. Although Lols are indivisible, they bear
a kind of inner structure. In [PS09] Peirce writes: ‘The line of identity can be
regarded as a graph composed of any number of dyads ’-is-’ or as a single dyad.’
He illustrates this view with an example (page 14 in [PS09]). According to this,
we can regard &; in different ways. If we regard &; as composed of three dyads,
we get the meaning ‘there is something which is something which is something
which is something’. If we regard this Lol as a single dyad, we get the meaning
‘there is something which is something’. But note that Peirce does not mention
that a Lol can be regarded as a monad (which would yield the meaning ‘there
is something’).

In his commentary of this part of [PS09], Sowa provides the following example:
man—is—is—is—is—uwill die . He explains its translation to an FOL-formula
in the following way: ‘ Fach of the five segments of the line of identity corresponds



to an existentially quantified variable, and each instance of the dyad —is— cor-
responds to an equal sign between two wvariables.” Hence Sowa adopted Peirce’s
view on Lols.

Burch shares this understanding as well. In [Bn97] he describes his comprehen-
sion of Lols: ‘Lines of identity are simply lines that are themselves composed of
spots of identity (of various adicities) that are directly joined together.” The spots
of identity correspond to the existentially quantified objects (the ‘somethings’ in
Peirce’s translations resp. the existentially quantified variables), and their joins
correspond to the relation ‘is’ resp. the equal sign between two variables.
Roberts makes in [Ro73] a similar approach. He provides three rules C7, C8
and C9 for the reading of Lols in EGs. The first of these rules is: ‘C7: A heavy
line, called a line of identity, shall be a graph asserting the numerical identity
of the individuals denoted by its two extremities.’” This rule expresses Peirce’s
understanding that a Lol can be regarded as a single dyad.

To summarize: The translation of €; to an FOL-formula or to a concept graph
depends on the number of dyads ‘is-’ (or of one monad) it is composed of. This
number is our choice. So we have infinite many different possible translations of
¢, namely the following:

| ||0ne monad|one dyad |two dyads | . |

FOL||? 31‘1.31‘2.1‘1 = T3 31‘1.3$2.E|$3.$1 =ZTo ANx1 = Z2|...
CG = CHT=HE)

Obviously all FOL-formulas are (semantically) equivalent (esp. all formulas are
equivalent to 3z.x =x). We will now explain why the same holds for the concept
graphs as well.

In [Da(1], we provided a sound and complete calculus for concept graphs with
cuts. This calculus contains esp. the rule splitting a vertex. This rule may
be reversed (i.e. the rule is a transformation which may be performed in both
directions). The reverse direction is named merging two vertices (see [Da02]).

These rules do the following: B

— merging two vertices
Let e € E' be an identity link with v(e) = (v1,v2) and cut(vy) > cut(e) =
cut(ve). Then vy may be merged into vs, i.e. v and e are erased and, for
every edge e € E, e(i) = vy is replaced by e(i) = vs.

— splitting a vertex
Let v : be a vertex in cut ¢y and incident with relation edges Ry, ..., R,,
placed in cuts ci, ..., cy,, respectively. Let ¢ be a cut such that c¢q,...,¢, <
¢ < ¢o. Then the following may be done: In ¢, a new vertex v’ =[T:«] and
a new identity-link between v and v’ is inserted. On Ry, ..., R,, arbitrary
instances of v are substituted by v'.

These two rules allow to insert and erase redundant copies of concept boxes .
These rules are for concept graphs with cuts what Peirce’s view that a Lol can

2 For a further discussion and examples see [Dal1] and [Da02]



be regarded as a graph composed of any number of dyads ‘is-’ is for EGs. In
other words: These rules are exactly the rules which are needed to see that all
the different possible translations of an EG are semantically equivalent. So we
set:

Definition 1. Let 8 be the smallest equivalence relation such that the following
holds: If &1 and &y are two concept graphs with cuts and we can derive &5 from
B, only with the rules splitting a vertex and merging two verticeﬂ, then we have
B108,. We say that 1 and &3 are 6-equivalent.

From the discussion so far we can draw the following conclusion: All the possible
correct translations of &; are f-equivalent. So it appears reasonable that the
translation of an EG is not a single concept graph, but a whole equivalence class
of 4. The mapping = has to yield a single member of this class.

An obvious approach for = is to assign one concept box [T:« Jto each Lol. But
in Example 10 it will turn out that this approach fails. So we will appeal to
understand that a Lol is a single dyad which asserts the identity between the
two endpoints of the Lol. So we assign a concept box to each endpoint of
the Lol and an identity link between them, i.e. we set Z(&;) := (= HT+].
2nd and 3rd Example:

In the next two examples we introduce predicates to our

discussion. We start with an example having a unary pred- ¢ = P——

icate P which is attached to a Lol. The EG is therefore
In this example we have one Lol. On one of its end points a predicate name is

attached. In the following, we will denote such points predicate spots.

When we translate EGs to concept graphs, it is obvious that predicate spots
should be translated to edges, i.e. relations, in concept graphs. We have argued
that we will translate a Lol to two concept boxes which are connected with
an identity link. One might think that in the translation of &, we can drop the
concept box which is the translation of the predicate spot of our EG (i.e.
the endpoint of the line of identity where the predicate name P is attached).
This means we would assign concept boxes only to ‘loose’ ends of Lols.

Doing the translation this way, our translation of €, would be e .
But the next graph shows that this approach fails: ¢ :=P—0Q

The translation of €3 must contain at least one concept box and two unary
edges with the predicate names P and R. But the Lol of &3 has no loose end.
Hence it is generally not sufficient to assign concept boxes only to loose
ends of Lols.

Sowa says in [PS09] the following: ‘In EGs, each predicate is represented by a
character string [...] and each argument or subject is represented by a line called
a peg. By itself, a pegﬂ represents an existentially quantified variable, and a
Lol that connects two or more pegs corresponds to an equal sign ‘=" between the

3 for technical reasons, the rule isomorphism is needed, too.
* The term ‘hook’ instead of ‘peg’ is used by Peirce, too.



corresponding variables.” The crucial conclusion we can draw from this statement
is that we have to assign a concept box (which is the correspondent of
‘existentially quantified variable’) in concept graphs to each peg of a predicate
spot. Hence we set

E(&) = (PHTA AT and 5(€y) o= (PHTH = AT+ HQ)

These graphs contain, similar to our first example, a number of redundant copies

of . But we have
5(€,)6 (P) and  5(¢)6 (P) Q)

4th Example:

Now we.con51der a graph in which we have a linked struc- ¢ = PTQ
ture of lines. R
There are different possibilities how this line with several branches can be seen.
Roberts explains a similar example in his book: ‘ We could consider the [...] lines
as a single line of identity with three extremities which have a point in common
[...]. And the totality of all the lines of identity that join one another he (Peirce)
called a ‘ligature’. we prefer the former terminology [...[

Later on he explains how a branching Lol should be treated. This is the next of
his three rules we mentioned in our first example. He states: ‘C8: A branching
line of identity with n number of branches will be used to express the identity of
the n individuals denoted by its n extremities.’

Sowa shares the understanding that the linked structure can be regarded as a
single Lol. For example, in [So97] he says: ‘In Peirce’s graphs, a bar or a linked
structure of bars is called a line of identity.’

Peirce’s understanding changes among different manuscripts. In his Cambridge
lectures of 1898 we find the phrase: ‘Now as long as there is but one such line of
identity, whether it branches or not [...].”

But in his tutorial [PS09] of 1909 he he provides an example which he explains

as follows:
is a graph instance composed of instances of three indivisible

male graphs which assert ‘there is a male’, ‘there is something
Ghuman human’ and ‘there is an African’. The syntactic junction or
African point of teridentity asserts the identity of something denoted

by all three.

Later on he says: ‘A line which is composed of two or more lines of identity
abutting on one another is called a ‘ligature’.’ So he explicit discriminates be-
tween one line of identity and a linked structure of lines of identity which he
calls ligature.

Our understanding of &, is the following: &, has three Lols. Each of them has
one endpoint which is a predicate spot. We consider the ‘syntactic junction’, the
‘point of teridentity’ as a point which have all the Lols in common, i.e. the three



Lols share a common endpoint. Following Burch, we will call points like this
identity spots. As long as a ligature does not cross a cut (a further discussion
on this will follow in Example 8), it makes no semantical difference whether we
understand the ligature in €4 as composed of three Lols or as being a single Lol
with three branches. We prefer the former view due to mere technical reasons:
With this view it is easier to provide a mathematical definition for EGs and to
provide a formal translation of EGs to concept graphs (see next section).
Before we proceed with this example, we refine our informal definition of predi-
cate spots, identity spots and pegs resp. hooks as follows:

— A predicate spot is a point where a predicate name is scribed. We presuppose
that in each predicate spot ends at least one Lol.

— If a predicate spot carries a predicate name with arity n, there will be exactly
n endpoints of Lols attached to this predicate point. This n endpoints are
called pegs or hooks.

— An identity spot is an endpoint of a Lol which is not a predicate spot.

Using this terminology, &, has
three Lols (which yield three
identity links in our translation)
and three predicate spots (which
yield three further edges in our
translation). Each predicate spot
carries one peg, and we have a further identity spot, hence we will have four
concept boxes in our translation. This yields = (&g).

Z(€4) contains again a number of redundant concept

boxes | T:« |. But like in the last examples, we have a (P) Q)
uniquely given concept graph which is equivalent to ~ =(&,) 6 (R)

our translation and which has a minimal number of

concept boxes . We have

5th Example:

If we use predicates with an arity > 1, the EGs can be

read the same way. We start with the following example, Cy = —T——
having a dyadic predicate T':

&5 has two Lols, one predicate spot with two pegs and two identity spots. Hence

5(€) = [TrHEHTAHT HT*H=HT] ¢
6th and 7th Example:

The following graphs have only one Lol. In &g, its extremities are attached to
the two pegs of the dyadic predicate T'. In €7 they are simply joined.

g = | T ) and @7:=©

The main difference between these two examples is the following: In &g, we have
two pegs to which we will assign two concept boxes in our translation to
concept graphs. In &;, we have only one identity spot, hence we will have only
one concept box in our translation. So we have




But it is worth to note that =(&7) is not f-equivalent to !

8th Example:

Finally we have to introduce cuts to our discussion. We €= P

start with a graph in which a Lol seems to cross a cut. 87 @
We find the phrase ‘a line of identity crossing a cut’ several times in the book
of Roberts. Sowa shares the understanding that a Lol may cross a cut with

Roberts.
In his commentary in [PS09] he explains the graph on the

right as follows: ‘[...] part of the line of identity is outside
the negation. When a line of identity crosses one ore more
negations [...J]

But in [PS09] Peirce offers a different point of view. In our first example, we have
cited Peirce’s definition of Lols. Here is the whole quotation: ‘Every indivisible
graph instance must be wholly contained in a single area. The line of identity
can be regarded as a graph composed of any number of dyads “is-’ or as a single
dyad. But it must be wholly in one area. Yet it may abut upon another line of
identity in another area.” Especially we can conclude that Peirce did not allow
Lols to cross a cutfl. To emphasize this, Peirce provides the following example,

which he describes as follows:
Thus it denies that there is a man that will not die,

that is, it asserts that every man (if there be such an
animal) will die. It contains two Lols (the part in the
shaded area and the part in the unshaded area).
So our interpretation of €g is the following: &g contains two Lols. In the words
of Peirce, ‘they abut on one another’. Our understanding is that they have one
point, an identity spot, in common. This identity spot is placed on the cut.

—— phoenix

man——will die

We have to analyze how points on a cut have to be treated. In his PhD-thesis,
Roberts cites Peirce as follows: ‘The cut is outside its own close.” From this, he
derives the last rule ‘C9: Points on a cut shall be considered to lie outside the
area of that cut.’” We adopt this view and draw from this the following conclusions
for our translation of €g:

In this translation, we assign a concept box to the identity spot on the
cut, and this box is placed outside the cut. All the remaining spots of the Lol
are placed inside the cut. So the concept box we assign to the peg of R is
placed inside the cut. The same holds for the identity link between these two
boxes which we assign to the right Lol: It is placed inside the cut, too. The
left Lol of &g is easier to understand. The concept box we assign to its
left endpoint (i.e. the peg of P) and the identity link we assign to the Lol have
obviously to be placed outside the cut. So we get

% Burch pointed this out in his talk on ICCS 2001, too.



s(e0) = (PO HOHTHR) o EHEH{R)

9th Example:

A well known example is the following graph (see ¢
Figure 13 on page 53 in [Ra73]): 9 E }

The meaning of this graph is ‘there are at least two things’ or, as Roberts says
in [Ra73|: ‘This devise signifies the non-identity of the individuals denoted by
the extremities of the ligature: ‘There are two objects such that no third object is
identical to both’. In particular Roberts interprets the graph in the following way:
It contains a ligature which is composed of three Lols, and each Lol corresponds
to one object. If we adopt this interpretation for the mapping =, we would
assign a concept box to each Lol (instead of assigning concept boxes
to endpoints of Lols). But the next example shows that this approach may fail.
So our understanding of &g is the following:

&y contains a ligature which is composed of three Lols. The Lol in the middle
has with each of the other two Lols an identity spot in common, and these two
spots are placed on the cut. Hence the concept boxes we assign to these spots
are placed outside the cut. As the remaining identity spots of the Lol in the
middle are placed inside the cut, the identity link which we assign to this Lol
is placed inside the cut, too. The concept boxes we assign to the extremities of
the ligature and the identity links we assign to the left and right Lol have to be
placed outside the cut. This yields altogether

10th Example:

This example is closely related to the last one. But &

contains only one Lol (which corresponds the the Lol in (= @
the middle of &g). Both endpoints are placed on the cut.

Like in the last example, the concept boxes

we assign to the endpoints are placed —
&ide the cut, and the identity link between E(€y) := "
these boxes is placed inside the cut. Hence the

translation of this EG graph is:

So &g and €&, are semantically equivalent. This is not surprising:

Roberts provides in [Ra73] two examples (Figure 3 and 4 on page

54) on which he explains how Lols which ‘terminate on a cut’ @
(Roberts) have to be treated. According to this, €1 is equivalent

to the graph on the right, which is another way of drawing &,.

But we want to stress that each concept graph which has the same meaning as
&g or &g needs at least two concept boxes ' So &1 cannot be translated to
a concept graph with only one concept box, although &,y has only one Lol. &;q

is the crucial example why we assign one concept box to each extremity of
a Lol, and why we do not assign one concept box to each Lol itself.



11th Example:
Now we consider the EG on the right. Again we have only

one Lol, but the endpoints of this Lol are identical. € = @

Contrary to the last example, we have one identity IT:* 3
spot instead of two. So our translation of €1, contains

only one concept box . This yields the transla- E(n) = I

tion on the right.
12th Example:

In the following we want to analyze some S S
examples in which Lols seem to ‘touch’ a M M
cut. In [PS0O9] Peirce demonstrates the in- CP

M

U

ference of a syllogism with EGs. In this
demonstration he provides the two EGs on
the right (numbering taken from Peirce):

M

Fig. 12 Fig. 13
He derives the EG of Fig. 13 with the insertion rule from the EG of Fig. 12. These
graphs show that Peirce had indeed the concept of ‘lines of identity touching a

cut’ and how he treats them.
The first example we want to consider is &;5. The spot

where the Lol in &5 touches the cut is in our view a point Ey =
which is placed on the cut and has therefore be considered
outside the cut.

According to this, the But this graph has a

graph on the right has R different meaning than R
the same meaning as S (P CS
612:

If we assume that €5 has only one Lol which touches the
cut in its middle, we would (according to our translation
rules given so far) translate this graph to the graph on the
right. This concept graph is not an appropriate translation
of @12.

So if we insist on the interpretation that this graph has one Lol, we would have
take into account that there are cases where we have to assign concept boxes
to identity spots which are located in the middle of a Lol. This would make
a formal translation of EGs to concept graphs with cuts more complicated.

For this reason, it is better to understand the rule ‘lines of identity do not cross
cuts’ strictly in the following sense: We only allow endpoints of Lols to be placed
directly on a cut.
According to this view,
€15 has two Lols which
have an identity spot in
common, and this identity
spot is placed on the cut.
This yields

10



13th, 14th and 15th Example:

How the touching Lol of ;5 can be seen is elaborated in the next three examples.
Each graph has a ligature with three branches and a teridentity spot which,
according to rule C8 of Roberts, expresses the identity of the three attached
Lols.

R
QflSSZP ‘@ (‘3143=P , 93153=P

It turns out that = maps €13 — &5 to the same #-class,

namely the class of the graph on the right. In particular P)
€13 — €15 have the same meaning.

16th Example:

Now we give an example of a graph in which a Lol P
seems to touch from the outside. We consider the Eig:=
following EG: Q

€16 has three Lols. Two of them have an identity spot on the cut in common.
So €4 has three predicate spots, each of them has one peg, and two identity
spots. So we have

(R)

17th, 18th and 19th Example:
Like for &5 we want to elaborate how the touching Lol of &4 can be treated.

= (D et () et ()

Compare €5 with the EG of Fig. 13 in [PS09]. In &5 the teridentity spot is
placed on the cut and can therefore, accordlng to rule C9, be considered to
lie outside the cut. So it has to be expected that €;; and &;3 have the same
meaning. We have indeed

Note that both translations are equivalent to ® @

But we have

11



Here are two aspects remarkable.

We want to point out that ;9 has a different meaning than &;; and &;5. More
precisely: €17 and &g entail &9, but not vice versa.

&9 is furthermore our first example where the class of all concept graphs which
are f-equivalent to Z(€&;9) does not
contain a uniquely given element with a
minimal number of concept boxes .
For &9 we have two minimal graphs
which are not isomorphic, namely
20th Example: Finally we want to remark that

n
re)

3 Definitions

In this section we attempt to provide a formal definition of EGs and a formal
definition of =. For the formal definition of concept graphs with cuts see [Da(l1]
or [Da0?].

We want to note that Peirce’s understanding of EGs depends on his understand-
ing of the continuum, and this understanding is very different from the set R.
For this reason we needed to discuss the semantics of several ‘bordercases’ of
EGs (for example: touching Lols). Nevertheless we provide a mathematization
of EGs as a structure of lines and curves in R? because R? is the standard math-
ematization of the euclidean plane. So ‘formal replicas of EG’ can be understood
to be defined as closely as possible to Peirce’s replicas of EGs in contemporary
mathematics.

Definition 2. Let R := (R;)ien be a family of finite sets R; whose elements
are called relation names. The elements of R; have the arity i.

A formal replica of an existential graph over R is a structure
(L: (Vl)lEL: T: C’U/t, (VC)CECut: P: (VP)PEP) where

— L, Cut, P are disjoint finite sets which are called lines of identity, cuts and
predicate spots, resp.,

— T is a single element, the sheet of assertion,

— each v, | € L is a differentiable function v, : [0,1] — R? such that for
x,y € [0,1] with vi(z) = v(y) we have z =y or {z,y} = {0,1}

12



— each v, ¢ € Cut is a differentiable and injective function v, : S* — R2,
where S is the circle in the euclidean plane with radius 1 and center 0.

— each vy is a structure (R, @, (Ip,isTpi)i=1,...r) with R, € Ry, &, € R* and
lpi € Lyx,; €{0,1} fori=1,..., k (and we set k = arity(p) = arity(R,))

3 )

such that the following conditions hold:

— Intersection conditions
Let vy () = vp(y) for myn € LU Cut. Then we have
o {m,n}NL#D (ie cuts do not intersect)
emeLneCut—ze€{0,1} and m € Cut,n € L = y € {0,1}
We further suppose that {((m,z), (n,y)) | vm(z) = vn(y),m,n € LUCut} is
finite.
— Predicate Spots conditions
e For each predicate spot v, == (Rp,Zp, (Ip.i,Tp,i)i=1,....arity(p)) we have
* vy, (Tp) =& fori=1,... arity(p)
« If y(z) = &p withl € L and = € [0,1], then (I,z) € {(lp,s, Tp,i) |
i=1,...,arity(p)}
* 1 # j implies (Ipi, Tp,i) # (lp,j, Tp,j)
o If we have two predicate spots p # q, then we have 2}, # Iy
e For each predicate spot p there is no cut ¢ € Cut with 1, € v.[S']

Before we define =, we first need some auxiliary definitions. For this let & :=
(L, Wier, T, Cut, (ve)cecut, P, (VP)PGP) be an EG.
Let ¢ € C be a cut. The Jordan Curve Theorem yields that v, partitions the
plane into two disjoint connected components, one of which is bounded and one
not bounded. We denote the bounded component with in(c) and the unbounded
component with out(c), and we assume that the cut itself belongs to out(c) (i.e.
v.[St] C out(c)). For the sheet of assertion we set in(T) := R? and out(T) := 0.
Cuts may contain each other (see for example Fig. 12 and 13 in [PS09]). This
induces canonically an order < on Cut U {T}, which now can be defined as
follows: for ¢,d € Cut U{T} we set ¢ < d <= v.[S'] C in(d).
Note that for ¢ € Cut U {T}, in(c) is the set of all points of the plane which are
enclosed by ¢, even if they are deeper nested inside other cuts. The points of in(c)
which are not deeper nested inside other cuts are said to by directly enclosed.
The set of all directly enclosed points is the area of a cut. So for ¢ € Cut U {T}
we set areac(c) := in(c)\ Uy, in(d).
R? is the disjoint union of all sets areae(c). So we can define a mapping cute :
R?> — Cut U {T} with & € areag(cute(F)) for each 7 € R?.
Finally we set Hook := {(2,,i)|p € PA1 <i < arity(p)}, PrSpot := {2, € R? |
p € P} and IdSpot := {# € R? |3l € L.3z € {0,1}.(z) = £}\PrSpot.
Definition 3. Let ¢ := (L, (W)ier, T,Cut, (Ve)cecut, Py (Vp)pepr) be a formal
instance of an existential graph. Then let Z(€) := (V, E,v, T,Cut,area, k, p) be
the following concept graph with cuts:

— V :=IdSpot U Hook and E:=P UL ,
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v is defined as follows:

e Forp e P we set v(p) := ((@p,1),..., (2, arity(p))
e Forle L we set v(l):= (vi0,v,0) with

{ Z if vi(z) € IdSpot
Vl,ac = (

Z,i) if thereis ap € P withl,; =1l and x,; =2

For c € Cut U {T} we set

area(c) := {d € Cut |vy[S*] C areapG(c)} U {F € IDSpot | cute(F) = ¢}

U {(Z,i) € Hook | cute(Z) = c} U {l € L|cute(ni(3)) =c}

— k(W) : =T forveV, k(p) =R, forpe P, k(l) :=id forl € L, and
— p(v):=T forallveV.
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