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t. Con
eptual graphs are based on the existential graphs ofPeir
e and the semanti
 networks of AI (see [So92℄). Existential graphsare 
omposed of three synta
ti
al elements: lines of identity, predi
atenames and 
uts (whi
h are used for negation). In [Da00℄ and [Da01℄we introdu
ed the 
uts of existential graphs as new synta
ti
al elementto 
on
ept graphs. The resulting 
on
ept graphs with 
uts have at leastthe expressivity of existential graphs. In this arti
le, we present someideas how existential graphs 
an be translated to 
on
ept graphs with
uts, or, in other words, how existential graphs 
an be regarded as spe
ial
on
ept graphs with 
uts. In order to do this, we provide several examplesof existential graphs. We dis
uss the meanings of these examples andhow they should be translated to 
on
ept graphs with 
uts. After thedis
ussion, we attempt to provide a formal de�nition of existential graphsand a formal de�nition of their translation to 
on
ept graphs with 
uts.1 Introdu
tionPeir
e invented the Existential Graphs (EGs) in 1896. He 
alled them his `
hefd'ouevre' and said they were `the lu
kiest �nd of my 
areer ' (see [So97℄). Peir
ealso invented the algebrai
 notation predi
ate 
al
ulus, but he preferred the di-agrammati
 style of logi
. Although the algebrai
 style of logi
 be
ame widelya

epted, EGs are still relevant. They are used in tea
hing, in automate reason-ing and theorem proving (see for example the works of Hammer and Shin, andJohn Stewarts PhD-Thesis on theorem proving with EGs). And what is mostimportant for this work: Con
eptual graphs are based on EGs. But a solid math-emati
al foundation of EGs is still missing in literature. In this work we providean approa
h of a mathemati
al foundation of EGs whi
h s based on 
on
eptgraphs.In [So97℄ Sowa says `Con
eptual graphs (CGs) are an extension of existentialgraphs with features adopted from linguisti
s and AI.' The term `extension'should not be understood synta
ti
ally: Sowa adopted the ideas of existentialgraphs (EGs), but CGs have a di�erent syntax. But `extension' 
an be under-stood semanti
ally: The de
isive idea is that everything whi
h 
an be expressedwith EGs 
an be expressed with CGs, too. A 
ru
ial part of this idea is that the
uts of EGs 
an be expressed by negation 
ontexts in 
on
eptual graphs. But




ontexts in CGs are handled as metalevel operators, but we 
onsider negation asa logi
al, not a metalevel operator. So we removed the negation 
ontexts fromCGs. Instead of them, we have introdu
ed the 
uts of EGs as new synta
ti
alelement to CGs (see [Da00℄, [Da01℄, [Da02℄). Furthermore the 
oreferen
e linksare repla
ed by so-
alled identity links, i.e. edges in the usual sense whi
h are la-belled by the identity relation id. The resulting graphs are 
alled 
on
ept graphswith 
uts.We want to stress that Peir
e distinguished between diagrams of EGs, whi
h he
alled repli
as of EGs, and the graphs themselves. He said: `A graph is a proposi-tional expression in the System of Existential Graphs of any possible state of theuniverse. It is a Symbol, and, as su
h, general, is a

ordingly to be distinguishedfrom a graph-repli
a. ' So a repli
a of an EG is a diagrammati
 representationof an underlying (abstra
t) EG. Please note that we have the same situationfor 
on
ept graphs: They 
an be represented diagrammati
ally, but they are nodiagrams.Now the idea that everything whi
h 
an be expressed with EGs 
an be expressedwith CGs 
an be re�ned in the following way: We want to �nd a mapping �1whi
h maps an repli
a of an EG E to a 
on
ept graphs with 
uts G := �(E)whi
h has the same semanti
al meaning as E. The mapping � will map lines ofidentity to 
on
ept boxes >:� and identity links, predi
ate spots to edges and
uts to 
uts.In this work we want to show how the mapping � should work. In order to dothis, we provide several examples of EGs by providing their diagrams. We dis
ussthe meanings of these examples and whi
h diÆ
ulties we have to 
ope with whenwe want to translate them to 
on
ept graphs with 
uts. After this dis
ussion,we attempt to provide a formal de�nition of repli
as of EGs as diagrams in theeu
lidean spa
e. Afterwords we will provide a formal de�nition of the mapping� whi
h maps the diagrams to spe
ial 
on
ept graphs with 
uts. These 
on
eptgraphs with 
uts 
an be 
onsidered to be the underlying EGs of the repli
as.This approa
h strengthens the mathemati
al foundations of EGs as well as ofEGs, and it shows pre
isely why and where CGs are an extension of EGs.Before we start the dis
ussion, we want to give a short overview over the mainsour
es in literature we are referring to. Peir
e himself did not write a `standardtextbook' on EGs, and, as Sowa says in his 
omments in [PS09℄, `reading Peir
e'smanus
ripts 
an be both frustrating and rewarding.' Roberts worked throughPeir
e's manus
ripts, and his PhD-thesis `The Existential Graphs of CharlesS. Peir
e' is a ben
hmark in the resear
h on EGs and the best introdu
tionin EGs we know. Bur
h is another expert on the work of Peir
e. In his book`A Peir
ean Redu
tion Theses' ([Bu91℄) he worked out the `Peir
ean Algebrai
Logi
' whi
h, as he says, `is designed spe
i�
ally to a

ord as 
losely as possiblewith the system of Existential Graphs that Peir
e developed in the late 1890s.'1 We have 
hosen the letter � for two reasons: First, we have de
ided to use a 
apitalgreek letter following the well known mapping � : CG ! FOL (and the mapping	 : FOL ! CG whi
h some authors use, too). Se
ondly, the form of `�' is similarto `E', the �rst letter of `Existential Graphs'.2



In order to understand the graphi
al representations of EGs, 
hapter 11 of hisbook is very instru
tive. Sowa provides in his manus
ript `Logi
: Graphi
al andAlgebrai
' ([So97℄) a short introdu
tion into EGs. Furthermore he has writtenenlightening 
omments on MS514, whi
h Peir
e wrote in 1909 as a tutorial onEGs. MS514 is also one of two work sour
es of Peir
e we use for our analysis ofEGs. The other one is given by his Cambridge le
tures from 1898 (esp. Le
ture3: `The Logi
 of Relatives'). These are the main sour
es we use in this arti
le.Of 
ourse the mentioned authors have written more on EGs, and there are moreauthors whi
h are experts on EGs (e.g. Hammer and Shin).2 Examples for Existential GraphsIn this se
tion we provide some examples for EGs and their translation to 
on
eptgraphs with 
uts.EGs are 
omposed of three kinds of parts:{ lines of identity, whi
h are used to denote the existen
e of obje
ts and theidentity between obje
ts (in this work, we will write `LoI' instead of `line ofidentity' for short){ predi
ate names, whi
h are atta
hed to LoIs and whi
h are used to denoteattributes of or relations between the obje
ts{ 
uts, whi
h are used to denote negation. In his later work, e.g. in [PS09℄,Peir
e used shaded areas instead of 
uts. In this work, we use 
uts to keep
onform with the notation we used in [Da00℄, [Da01℄ and [Da02℄. But whenwe adopt an example Peir
e has given in [PS09℄, we draw them in theiroriginal manner with shaded and unshaded areas instead of 
uts.1st Example:The �rst EG E1 we want to dis
uss is a single line of identity, i.e. E1 :=The (naive) meaning of this graph is `something exists', or, perhaps better, `thereis something'.LoIs are so-
alled `indivisible graphs'. Although LoIs are indivisible, they beara kind of inner stru
ture. In [PS09℄ Peir
e writes: `The line of identity 
an beregarded as a graph 
omposed of any number of dyads '-is-' or as a single dyad.'He illustrates this view with an example (page 14 in [PS09℄). A

ording to this,we 
an regard E1 in di�erent ways. If we regard E1 as 
omposed of three dyads,we get the meaning `there is something whi
h is something whi
h is somethingwhi
h is something'. If we regard this LoI as a single dyad, we get the meaning`there is something whi
h is something'. But note that Peir
e does not mentionthat a LoI 
an be regarded as a monad (whi
h would yield the meaning `thereis something').In his 
ommentary of this part of [PS09℄, Sowa provides the following example:man|is|is|is|is|will die . He explains its translation to an FOL-formulain the following way: `Ea
h of the �ve segments of the line of identity 
orresponds3



to an existentially quanti�ed variable, and ea
h instan
e of the dyad {is{ 
or-responds to an equal sign between two variables.' Hen
e Sowa adopted Peir
e'sview on LoIs.Bur
h shares this understanding as well. In [Bu91℄ he des
ribes his 
omprehen-sion of LoIs: `Lines of identity are simply lines that are themselves 
omposed ofspots of identity (of various adi
ities) that are dire
tly joined together.' The spotsof identity 
orrespond to the existentially quanti�ed obje
ts (the `somethings' inPeir
e's translations resp. the existentially quanti�ed variables), and their joins
orrespond to the relation `is' resp. the equal sign between two variables.Roberts makes in [Ro73℄ a similar approa
h. He provides three rules C7, C8and C9 for the reading of LoIs in EGs. The �rst of these rules is: `C7: A heavyline, 
alled a line of identity, shall be a graph asserting the numeri
al identityof the individuals denoted by its two extremities.' This rule expresses Peir
e'sunderstanding that a LoI 
an be regarded as a single dyad.To summarize: The translation of E1 to an FOL-formula or to a 
on
ept graphdepends on the number of dyads `-is-' (or of one monad) it is 
omposed of. Thisnumber is our 
hoi
e. So we have in�nite many di�erent possible translations ofE1, namely the following:one monad one dyad two dyads : : :FOL ? 9x1:9x2:x1 = x2 9x1:9x2:9x3:x1 = x2 ^ x1 = x2 : : :CG :* :*:* :*:* :* : : :Obviously all FOL-formulas are (semanti
ally) equivalent (esp. all formulas areequivalent to 9x:x=x). We will now explain why the same holds for the 
on
eptgraphs as well.In [Da01℄, we provided a sound and 
omplete 
al
ulus for 
on
ept graphs with
uts. This 
al
ulus 
ontains esp. the rule splitting a vertex. This rule maybe reversed (i.e. the rule is a transformation whi
h may be performed in bothdire
tions). The reverse dire
tion is namedmerging two verti
es (see [Da02℄).These rules do the following: 2{ merging two verti
esLet e 2 Eid be an identity link with �(e) = (v1; v2) and 
ut(v1) � 
ut(e) =
ut(v2). Then v1 may be merged into v2, i.e. v1 and e are erased and, forevery edge e 2 E, e(i) = v1 is repla
ed by e(i) = v2.{ splitting a vertexLet v = >:� be a vertex in 
ut 
0 and in
ident with relation edgesR1; : : : ; Rn,pla
ed in 
uts 
1; : : : ; 
n, respe
tively. Let 
 be a 
ut su
h that 
1; : : : ; 
n �
 � 
0. Then the following may be done: In 
, a new vertex v0 = >:� anda new identity-link between v and v0 is inserted. On R1; : : : ; Rn, arbitraryinstan
es of v are substituted by v0.These two rules allow to insert and erase redundant 
opies of 
on
ept boxes >:� .These rules are for 
on
ept graphs with 
uts what Peir
e's view that a LoI 
an2 For a further dis
ussion and examples see [Da01℄ and [Da02℄4



be regarded as a graph 
omposed of any number of dyads `-is-' is for EGs. Inother words: These rules are exa
tly the rules whi
h are needed to see that allthe di�erent possible translations of an EG are semanti
ally equivalent. So weset:De�nition 1. Let � be the smallest equivalen
e relation su
h that the followingholds: If G1 and G2 are two 
on
ept graphs with 
uts and we 
an derive G2 fromG1 only with the rules splitting a vertex and merging two verti
es3, then we haveG1�G2. We say that G1 and G2 are �-equivalent.From the dis
ussion so far we 
an draw the following 
on
lusion: All the possible
orre
t translations of E1 are �-equivalent. So it appears reasonable that thetranslation of an EG is not a single 
on
ept graph, but a whole equivalen
e 
lassof �. The mapping � has to yield a single member of this 
lass.An obvious approa
h for � is to assign one 
on
ept box >:� to ea
h LoI. Butin Example 10 it will turn out that this approa
h fails. So we will appeal tounderstand that a LoI is a single dyad whi
h asserts the identity between thetwo endpoints of the LoI. So we assign a 
on
ept box >:� to ea
h endpoint ofthe LoI and an identity link between them, i.e. we set �(E1) := :*:* .2nd and 3rd Example:In the next two examples we introdu
e predi
ates to ourdis
ussion. We start with an example having a unary pred-i
ate P whi
h is atta
hed to a LoI. The EG is therefore E2 := PIn this example we have one LoI. On one of its end points a predi
ate name isatta
hed. In the following, we will denote su
h points predi
ate spots.When we translate EGs to 
on
ept graphs, it is obvious that predi
ate spotsshould be translated to edges, i.e. relations, in 
on
ept graphs. We have arguedthat we will translate a LoI to two 
on
ept boxes >:� whi
h are 
onne
ted withan identity link. One might think that in the translation of E2 we 
an drop the
on
ept box >:� whi
h is the translation of the predi
ate spot of our EG (i.e.the endpoint of the line of identity where the predi
ate name P is atta
hed).This means we would assign 
on
ept boxes >:� only to `loose' ends of LoIs.Doing the translation this way, our translation of E2 would be :*P .But the next graph shows that this approa
h fails: E3 := P QThe translation of E3 must 
ontain at least one 
on
ept box >:� and two unaryedges with the predi
ate names P and R. But the LoI of E3 has no loose end.Hen
e it is generally not suÆ
ient to assign 
on
ept boxes >:� only to looseends of LoIs.Sowa says in [PS09℄ the following: `In EGs, ea
h predi
ate is represented by a
hara
ter string [...℄ and ea
h argument or subje
t is represented by a line 
alleda peg. By itself, a peg 4 represents an existentially quanti�ed variable, and aLoI that 
onne
ts two or more pegs 
orresponds to an equal sign `=' between the3 for te
hni
al reasons, the rule isomorphism is needed, too.4 The term `hook' instead of `peg' is used by Peir
e, too.5




orresponding variables.' The 
ru
ial 
on
lusion we 
an draw from this statementis that we have to assign a 
on
ept box >:� (whi
h is the 
orrespondent of`existentially quanti�ed variable') in 
on
ept graphs to ea
h peg of a predi
atespot. Hen
e we set�(E2) := :* :*P and �(E3) := :* :*P QThese graphs 
ontain, similar to our �rst example, a number of redundant 
opiesof >:� . But we have�(E2) � :*P and �(E3) � :*P Q4th Example:Now we 
onsider a graph in whi
h we have a linked stru
-ture of lines. E4 :=
R

QPThere are di�erent possibilities how this line with several bran
hes 
an be seen.Roberts explains a similar example in his book: `We 
ould 
onsider the [...℄ linesas a single line of identity with three extremities whi
h have a point in 
ommon[...℄. And the totality of all the lines of identity that join one another he (Peir
e)
alled a `ligature'. we prefer the former terminology [...℄'Later on he explains how a bran
hing LoI should be treated. This is the next ofhis three rules we mentioned in our �rst example. He states: `C8: A bran
hingline of identity with n number of bran
hes will be used to express the identity ofthe n individuals denoted by its n extremities.'Sowa shares the understanding that the linked stru
ture 
an be regarded as asingle LoI. For example, in [So97℄ he says: `In Peir
e's graphs, a bar or a linkedstru
ture of bars is 
alled a line of identity.'Peir
e's understanding 
hanges among di�erent manus
ripts. In his Cambridgele
tures of 1898 we �nd the phrase: `Now as long as there is but one su
h line ofidentity, whether it bran
hes or not [...℄.'But in his tutorial [PS09℄ of 1909 he he provides an example whi
h he explainsas follows:
male

African
human

is a graph instan
e 
omposed of instan
es of three indivisiblegraphs whi
h assert `there is a male', `there is somethinghuman' and `there is an Afri
an'. The synta
ti
 jun
tion orpoint of teridentity asserts the identity of something denotedby all three.Later on he says: `A line whi
h is 
omposed of two or more lines of identityabutting on one another is 
alled a `ligature'.' So he expli
it dis
riminates be-tween one line of identity and a linked stru
ture of lines of identity whi
h he
alls ligature.Our understanding of E4 is the following: E4 has three LoIs. Ea
h of them hasone endpoint whi
h is a predi
ate spot. We 
onsider the `synta
ti
 jun
tion', the`point of teridentity' as a point whi
h have all the LoIs in 
ommon, i.e. the three6



LoIs share a 
ommon endpoint. Following Bur
h, we will 
all points like thisidentity spots. As long as a ligature does not 
ross a 
ut (a further dis
ussionon this will follow in Example 8), it makes no semanti
al di�eren
e whether weunderstand the ligature in E4 as 
omposed of three LoIs or as being a single LoIwith three bran
hes. We prefer the former view due to mere te
hni
al reasons:With this view it is easier to provide a mathemati
al de�nition for EGs and toprovide a formal translation of EGs to 
on
ept graphs (see next se
tion).Before we pro
eed with this example, we re�ne our informal de�nition of predi-
ate spots, identity spots and pegs resp. hooks as follows:{ A predi
ate spot is a point where a predi
ate name is s
ribed. We presupposethat in ea
h predi
ate spot ends at least one LoI.{ If a predi
ate spot 
arries a predi
ate name with arity n, there will be exa
tlyn endpoints of LoIs atta
hed to this predi
ate point. This n endpoints are
alled pegs or hooks.{ An identity spot is an endpoint of a LoI whi
h is not a predi
ate spot.Using this terminology, E4 hasthree LoIs (whi
h yield threeidentity links in our translation)and three predi
ate spots (whi
hyield three further edges in ourtranslation). Ea
h predi
ate spot �(E4) := :*:*:*

:*

Q

R

P


arries one peg, and we have a further identity spot, hen
e we will have four
on
ept boxes >:� in our translation. This yields �(E6).�(E4) 
ontains again a number of redundant 
on
eptboxes >:� . But like in the last examples, we have auniquely given 
on
ept graph whi
h is equivalent toour translation and whi
h has a minimal number of
on
ept boxes >:� . We have �(E4) � :*P

R

Q5th Example:If we use predi
ates with an arity > 1, the EGs 
an beread the same way. We start with the following example,having a dyadi
 predi
ate T : E5 := TE5 has two LoIs, one predi
ate spot with two pegs and two identity spots. Hen
e�(E5) := :*:* :* :*T � :* :*T6th and 7th Example:The following graphs have only one LoI. In E6, its extremities are atta
hed tothe two pegs of the dyadi
 predi
ate T . In E7 they are simply joined.E6 := T and E7 :=The main di�eren
e between these two examples is the following: In E6, we havetwo pegs to whi
h we will assign two 
on
ept boxes >:� in our translation to
on
ept graphs. In E7, we have only one identity spot, hen
e we will have onlyone 
on
ept box >:� in our translation. So we have7



�(E6) := :* :*
T �

:*

T and �(E7) := :*But it is worth to note that �(E7) is not �-equivalent to >:� !8th Example:Finally we have to introdu
e 
uts to our dis
ussion. Westart with a graph in whi
h a LoI seems to 
ross a 
ut. E8 := P RWe �nd the phrase `a line of identity 
rossing a 
ut' several times in the bookof Roberts. Sowa shares the understanding that a LoI may 
ross a 
ut withRoberts.In his 
ommentary in [PS09℄ he explains the graph on theright as follows: `[...℄ part of the line of identity is outsidethe negation. When a line of identity 
rosses one ore morenegations [...℄' phoenixBut in [PS09℄ Peir
e o�ers a di�erent point of view. In our �rst example, we have
ited Peir
e's de�nition of LoIs. Here is the whole quotation: `Every indivisiblegraph instan
e must be wholly 
ontained in a single area. The line of identity
an be regarded as a graph 
omposed of any number of dyads `-is-' or as a singledyad. But it must be wholly in one area. Yet it may abut upon another line ofidentity in another area.' Espe
ially we 
an 
on
lude that Peir
e did not allowLoIs to 
ross a 
ut5. To emphasize this, Peir
e provides the following example,whi
h he des
ribes as follows:
man will die

Thus it denies that there is a man that will not die,that is, it asserts that every man (if there be su
h ananimal) will die. It 
ontains two LoIs (the part in theshaded area and the part in the unshaded area).So our interpretation of E8 is the following: E8 
ontains two LoIs. In the wordsof Peir
e, `they abut on one another'. Our understanding is that they have onepoint, an identity spot, in 
ommon. This identity spot is pla
ed on the 
ut.We have to analyze how points on a 
ut have to be treated. In his PhD-thesis,Roberts 
ites Peir
e as follows: `The 
ut is outside its own 
lose.' From this, hederives the last rule `C9: Points on a 
ut shall be 
onsidered to lie outside thearea of that 
ut.' We adopt this view and draw from this the following 
on
lusionsfor our translation of E8:In this translation, we assign a 
on
ept box >:� to the identity spot on the
ut, and this box is pla
ed outside the 
ut. All the remaining spots of the LoIare pla
ed inside the 
ut. So the 
on
ept box >:� we assign to the peg of R ispla
ed inside the 
ut. The same holds for the identity link between these twoboxes whi
h we assign to the right LoI: It is pla
ed inside the 
ut, too. Theleft LoI of E8 is easier to understand. The 
on
ept box >:� we assign to itsleft endpoint (i.e. the peg of P ) and the identity link we assign to the LoI haveobviously to be pla
ed outside the 
ut. So we get5 Bur
h pointed this out in his talk on ICCS 2001, too.8



�(E8) := :*:* :*P R � :*P R9th Example:A well known example is the following graph (seeFigure 13 on page 53 in [Ro73℄): E9 :=The meaning of this graph is `there are at least two things' or, as Roberts saysin [Ro73℄: `This devise signi�es the non-identity of the individuals denoted bythe extremities of the ligature: `There are two obje
ts su
h that no third obje
t isidenti
al to both'.' In parti
ular Roberts interprets the graph in the following way:It 
ontains a ligature whi
h is 
omposed of three LoIs, and ea
h LoI 
orrespondsto one obje
t. If we adopt this interpretation for the mapping �, we wouldassign a 
on
ept box >:� to ea
h LoI (instead of assigning 
on
ept boxes >:�to endpoints of LoIs). But the next example shows that this approa
h may fail.So our understanding of E9 is the following:E9 
ontains a ligature whi
h is 
omposed of three LoIs. The LoI in the middlehas with ea
h of the other two LoIs an identity spot in 
ommon, and these twospots are pla
ed on the 
ut. Hen
e the 
on
ept boxes we assign to these spotsare pla
ed outside the 
ut. As the remaining identity spots of the LoI in themiddle are pla
ed inside the 
ut, the identity link whi
h we assign to this LoIis pla
ed inside the 
ut, too. The 
on
ept boxes we assign to the extremities ofthe ligature and the identity links we assign to the left and right LoI have to bepla
ed outside the 
ut. This yields altogether�(E9) := :*:* :* :* � :* :*10th Example:This example is 
losely related to the last one. But E10
ontains only one LoI (whi
h 
orresponds the the LoI inthe middle of E9). Both endpoints are pla
ed on the 
ut. E10 :=Like in the last example, the 
on
ept boxes>:� we assign to the endpoints are pla
edoutside the 
ut, and the identity link betweenthese boxes is pla
ed inside the 
ut. Hen
e thetranslation of this EG graph is: �(E10) := :* :*So E9 and E10 are semanti
ally equivalent. This is not surprising:Roberts provides in [Ro73℄ two examples (Figure 3 and 4 on page54) on whi
h he explains how LoIs whi
h `terminate on a 
ut '(Roberts) have to be treated. A

ording to this, E10 is equivalentto the graph on the right, whi
h is another way of drawing E9.But we want to stress that ea
h 
on
ept graph whi
h has the same meaning asE9 or E10 needs at least two 
on
ept boxes >:� ! So E10 
annot be translated toa 
on
ept graph with only one 
on
ept box, although E10 has only one LoI. E10is the 
ru
ial example why we assign one 
on
ept box >:� to ea
h extremity ofa LoI, and why we do not assign one 
on
ept box >:� to ea
h LoI itself.9



11th Example:Now we 
onsider the EG on the right. Again we have onlyone LoI, but the endpoints of this LoI are identi
al. E11 :=Contrary to the last example, we have one identityspot instead of two. So our translation of E11 
ontainsonly one 
on
ept box >:� . This yields the transla-tion on the right. �(E11) := :*12th Example:In the following we want to analyze someexamples in whi
h LoIs seem to `tou
h' a
ut. In [PS09℄ Peir
e demonstrates the in-feren
e of a syllogism with EGs. In thisdemonstration he provides the two EGs onthe right (numbering taken from Peir
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Fig. 12 Fig. 13He derives the EG of Fig. 13 with the insertion rule from the EG of Fig. 12. Thesegraphs show that Peir
e had indeed the 
on
ept of `lines of identity tou
hing a
ut' and how he treats them.The �rst example we want to 
onsider is E12. The spotwhere the LoI in E12 tou
hes the 
ut is in our view a pointwhi
h is pla
ed on the 
ut and has therefore be 
onsideredoutside the 
ut. E12 := R

SA

ording to this, thegraph on the right hasthe same meaning asE12: S
R

But this graph has adi�erent meaning thanE12: S
RIf we assume that E12 has only one LoI whi
h tou
hes the
ut in its middle, we would (a

ording to our translationrules given so far) translate this graph to the graph on theright. This 
on
ept graph is not an appropriate translationof E12. :*

:* S

RSo if we insist on the interpretation that this graph has one LoI, we would havetake into a

ount that there are 
ases where we have to assign 
on
ept boxes>:� to identity spots whi
h are lo
ated in the middle of a LoI. This would makea formal translation of EGs to 
on
ept graphs with 
uts more 
ompli
ated.For this reason, it is better to understand the rule `lines of identity do not 
ross
uts' stri
tly in the following sense: We only allow endpoints of LoIs to be pla
eddire
tly on a 
ut.A

ording to this view,E12 has two LoIs whi
hhave an identity spot in
ommon, and this identityspot is pla
ed on the 
ut.This yields �(E12) := :*
:*

:* S

R � :*
S

R

10



13th, 14th and 15th Example:How the tou
hing LoI of E12 
an be seen is elaborated in the next three examples.Ea
h graph has a ligature with three bran
hes and a teridentity spot whi
h,a

ording to rule C8 of Roberts, expresses the identity of the three atta
hedLoIs.E13 := P
R

S
, E14 := P

S

R , E15 := P
S

RIt turns out that � maps E13 { E15 to the same �-
lass,namely the 
lass of the graph on the right. In parti
ularE13 { E15 have the same meaning. :*P
S

R16th Example:Now we give an example of a graph in whi
h a LoIseems to tou
h from the outside. We 
onsider thefollowing EG: E16 := P

Q
RE16 has three LoIs. Two of them have an identity spot on the 
ut in 
ommon.So E16 has three predi
ate spots, ea
h of them has one peg, and two identityspots. So we have�(E16) := :* :* :*

:*

:*

R
Q

P � :*

:*

QP

R17th, 18th and 19th Example:Like for E12 we want to elaborate how the tou
hing LoI of E16 
an be treated.E17 := R
P

Q
, E18 := P

R
Q

, E19 := R
P

QCompare E18 with the EG of Fig. 13 in [PS09℄. In E18 the teridentity spot ispla
ed on the 
ut and 
an therefore, a

ording to rule C9, be 
onsidered tolie outside the 
ut. So it has to be expe
ted that E17 and E18 have the samemeaning. We have indeed�(E17) := :*

:*

:*

:* :*

P

Q

R � :* :*

:*

:*

R

P

Q

=: �(E18)
Note that both translations are equivalent to :*

P

Q
RBut we have 11



�(E19) :=
:*

:* :*

:*
:* :*

P

Q
R � :*

:*

:*

P

Q

RHere are two aspe
ts remarkable.We want to point out that E19 has a di�erent meaning than E17 and E18. Morepre
isely: E17 and E18 entail E19, but not vi
e versa.E19 is furthermore our �rst example where the 
lass of all 
on
ept graphs whi
hare �-equivalent to �(E19) does not
ontain a uniquely given element with aminimal number of 
on
ept boxes >:� .For E19 we have two minimal graphswhi
h are not isomorphi
, namely :*

:*

P

Q

R , :*

:*

P

Q R20th Example: Finally we want to remark that�0B�Q

R

S

P
1CA := :*

:*

:*

:*

:* S

RP

Q
� :*

S

R

Q

P3 De�nitionsIn this se
tion we attempt to provide a formal de�nition of EGs and a formalde�nition of �. For the formal de�nition of 
on
ept graphs with 
uts see [Da01℄or [Da02℄.We want to note that Peir
e's understanding of EGs depends on his understand-ing of the 
ontinuum, and this understanding is very di�erent from the set R.For this reason we needed to dis
uss the semanti
s of several `border
ases' ofEGs (for example: tou
hing LoIs). Nevertheless we provide a mathematizationof EGs as a stru
ture of lines and 
urves in R2 be
ause R2 is the standard math-ematization of the eu
lidean plane. So `formal repli
as of EG' 
an be understoodto be de�ned as 
losely as possible to Peir
e's repli
as of EGs in 
ontemporarymathemati
s.De�nition 2. Let R := (Ri)i2N be a family of �nite sets Ri whose elementsare 
alled relation names. The elements of Ri have the arity i.A formal repli
a of an existential graph over R is a stru
ture(L; (�l)l2L;>; Cut; (�
)
2Cut; P; (�p)p2P ) where{ L, Cut, P are disjoint �nite sets whi
h are 
alled lines of identity, 
uts andpredi
ate spots, resp.,{ > is a single element, the sheet of assertion,{ ea
h �l, l 2 L is a di�erentiable fun
tion �l : [0; 1℄ ! R2 su
h that forx; y 2 [0; 1℄ with �l(x) = �l(y) we have x = y or fx; yg = f0; 1g12



{ ea
h �
, 
 2 Cut is a di�erentiable and inje
tive fun
tion �
 : S1 ! R2 ,where S1 is the 
ir
le in the eu
lidean plane with radius 1 and 
enter ~0.{ ea
h �p is a stru
ture (Rp; ~xp; (lp;i; xp;i)i=1;:::;k) with Rp 2 Rk, ~xp 2 R2 andlp;i 2 L; xp;i 2 f0; 1g for i = 1; : : : ; k (and we set k := arity(p) := arity(Rp))su
h that the following 
onditions hold:{ Interse
tion 
onditionsLet �m(x) = �n(y) for m;n 2 L [ Cut. Then we have� fm;ng \ L 6= ; (i.e. 
uts do not interse
t)� m 2 L; n 2 Cut =) x 2 f0; 1g and m 2 Cut; n 2 L =) y 2 f0; 1gWe further suppose that f((m;x); (n; y)) j �m(x) = �n(y);m; n 2 L[Cutg is�nite.{ Predi
ate Spots 
onditions� For ea
h predi
ate spot �p := (Rp; ~xp; (lp;i; xp;i)i=1;:::;arity(p)) we have� �lp;i(xp;i) = ~xp for i = 1; : : : ; arity(p)� If �l(x) = ~xp with l 2 L and x 2 [0; 1℄, then (l; x) 2 f(lp;i; xp;i) ji = 1; : : : ; arity(p)g� i 6= j implies (lp;i; xp;i) 6= (lp;j ; xp;j)� If we have two predi
ate spots p 6= q, then we have ~xp 6= ~xq� For ea
h predi
ate spot p there is no 
ut 
 2 Cut with ~xp 2 �
[S1℄Before we de�ne �, we �rst need some auxiliary de�nitions. For this let E :=(L; (�l)l2L;>; Cut; (�
)
2Cut; P; (�p)p2P ) be an EG.Let 
 2 C be a 
ut. The Jordan Curve Theorem yields that �
 partitions theplane into two disjoint 
onne
ted 
omponents, one of whi
h is bounded and onenot bounded. We denote the bounded 
omponent with in(
) and the unbounded
omponent with out(
), and we assume that the 
ut itself belongs to out(
) (i.e.�
[S1℄ � out(
)). For the sheet of assertion we set in(>) := R2 and out(>) := ;.Cuts may 
ontain ea
h other (see for example Fig. 12 and 13 in [PS09℄). Thisindu
es 
anoni
ally an order � on Cut [ f>g, whi
h now 
an be de�ned asfollows: for 
; d 2 Cut [ f>g we set 
 < d :() �
[S1℄ � in(d).Note that for 
 2 Cut[ f>g, in(
) is the set of all points of the plane whi
h areen
losed by 
, even if they are deeper nested inside other 
uts. The points of in(
)whi
h are not deeper nested inside other 
uts are said to by dire
tly en
losed.The set of all dire
tly en
losed points is the area of a 
ut. So for 
 2 Cut [ f>gwe set areaE(
) := in(
)nSd<
 in(d).R2 is the disjoint union of all sets areaE(
). So we 
an de�ne a mapping 
utE :R2 ! Cut [ f>g with ~x 2 areaE(
utE(~x)) for ea
h ~x 2 R2 .Finally we set Hook := f( ~xp; i) j p 2 P ^1 � i � arity(p)g, PrSpot := f ~xp 2 R2 jp 2 Pg and IdSpot := f~x 2 R2 j 9l 2 L:9x 2 f0; 1g:�l(x) = ~xgnPrSpot.De�nition 3. Let E := (L; (�l)l2L;>; Cut; (�
)
2Cut; P; (�p)p2P ) be a formalinstan
e of an existential graph. Then let �(E) := (V;E; �;>; Cut; area; �; �) bethe following 
on
ept graph with 
uts:{ V := IdSpot :[ Hook and E := P :[ L ,13



{ � is de�ned as follows:� For p 2 P we set �(p) := (( ~xp; 1); : : : ; ( ~xp; arity(p))� For l 2 L we set �(l) := (�l;0; �l;0) with�l;x := � ~x if �l(x) 2 IdSpot(~x; i) if there is a p 2 P with lp;i = l and xp;i = x ;{ For 
 2 Cut [ f>g we setarea(
) := fd 2 Cut j �d[S1℄ � areaEG(
)g :[ f~x 2 IDSpot j 
utE(~x) = 
g:[ f(~x; i) 2 Hook j 
utE(~x) = 
g :[ fl 2 L j 
utE(�l( 12 )) = 
g ;{ �(v) := > for v 2 V , �(p) := Rp for p 2 P , �(l) := id for l 2 L, and{ �(v) := > for all v 2 V .Referen
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